

 MongoosePush

 v2.2.0-dev

 Table of contents

 	Introduction

 	Configuration

 	Local build

 	Running tests

 	Docker

 	HTTP API

 	Healthcheck

 	Metrics

 	Modules

 	MongoosePush

 	MongoosePushWeb.HealthcheckController

 	MongoosePush.API

 	MongoosePush.API.V1.ResponseEncoder

 	MongoosePush.API.V2.ResponseEncoder

 	MongoosePush.API.V3.ResponseEncoder

 	MongoosePush.Config.Utils

 	MongoosePush.Logger.Common

 	MongoosePush.Logger.JSON

 	MongoosePush.Logger.LogFmt

 	MongoosePush.Metrics.TelemetryMetrics

 	MongoosePush.Service

 	MongoosePush.Service.APNS

 	MongoosePush.Service.APNS.ErrorHandler

 	MongoosePush.Service.APNS.State

 	MongoosePush.Service.APNS.Supervisor

 	MongoosePush.Service.FCM

 	MongoosePush.Service.FCM.ErrorHandler

 	MongoosePush.Service.FCM.Pool.Supervisor

 	MongoosePush.Service.FCM.Pools

 	MongoosePushWeb

 	MongoosePushWeb.APIv1.NotificationController

 	MongoosePushWeb.APIv2.NotificationController

 	MongoosePushWeb.APIv3.NotificationController

 	MongoosePushWeb.ApiSpec

 	MongoosePushWeb.Endpoint

 	MongoosePushWeb.PrometheusMetricsController

 	MongoosePushWeb.Router

 	MongoosePushWeb.Plug.CastAndValidate

 	MongoosePushWeb.Plug.CastAndValidate.StubAdapter

 	MongoosePushWeb.Plug.MaybePutSwaggerUI

 	MongoosePushWeb.Plug.MaybeRenderSpec

 	MongoosePushWeb.Protocols.RequestDecoder

 	MongoosePushWeb.Protocols.RequestDecoderHelper

 	MongoosePushWeb.Schemas

 	MongoosePushWeb.Schemas.Request.SendNotification.Deep

 	MongoosePushWeb.Schemas.Request.SendNotification.Deep.AlertNotification

 	MongoosePushWeb.Schemas.Request.SendNotification.Deep.Common.Alert

 	MongoosePushWeb.Schemas.Request.SendNotification.Deep.Common.Data

 	MongoosePushWeb.Schemas.Request.SendNotification.Deep.MixedNotification

 	MongoosePushWeb.Schemas.Request.SendNotification.Deep.SilentNotification

 	MongoosePushWeb.Schemas.Request.SendNotification.FlatNotification

 	MongoosePushWeb.Schemas.Response.SendNotification.GenericError

 	MongoosePushWeb.Schemas.Response.SendNotification.Gone

 	MongoosePushWeb.Schemas.Response.SendNotification.PayloadTooLarge

 	MongoosePushWeb.Schemas.Response.SendNotification.ServiceUnavailable

 	MongoosePushWeb.Schemas.Response.SendNotification.TooManyRequests

 	MongoosePushWeb.Schemas.Response.SendNotification.UnknownError

 	Mix Tasks

 	mix certs.dev

 	mix gh_pages_docs

 	mix test.env.down

 	mix test.env.up

 	mix test.env.utils

 	mix test.env.wait

MongoosePush

[image: CircleCI] [image: Coverage Status]
MongoosePush is a simple, RESTful service written in Elixir, providing the ability to send push
notifications to FCM (Firebase Cloud Messaging) and/or
APNS (Apple Push Notification Service) via their HTTP/2 API.

 Documentation

Documentation is available at: https://esl.github.io/MongoosePush
Quick start

 Running from DockerHub

We provide prebuilt MongoosePush images. Configuration requires either an FCM token, APNS certificates or an APNS token. Depending on your usecase, you can have some or all of them in a standalone MongoosePush instance or using a docker container.
For the full configuration you need to set the following directory structure up:
	priv/	ssl/	rest_cert.pem - The HTTP endpoint certificate
	rest_key.pem - private key for the HTTP endpoint certificate (has to be unencrypted)

	apns/	prod_cert.pem - Production APNS app certificate
	prod_key.pem - Production APNS app certificate's private key (has to be unencrypted)
	dev_cert.pem - Development APNS app certificate
	dev_key.pem - Development APNS app certificate's private key (has to be unencrypted)
	token.p8 - APNS authentication token

	fcm/	token.json - FCM service account JSON file

	var/	config.toml - TOML configuration file (optional)

If you want to use APNS token authentication you need to provide token and set key_id and team_id environment variables. To see how to obtain token and key_id read this.
To see how to obtain team_id read this.
FCM JSON file can be generated by Firebase console (https://console.firebase.google.com). Go to your project -> Project Settings -> Service accounts -> Generate new private key.
TOML config file is optional. It allows to fully configure the service but basic configuration can be achieved via environmental variables only.
Assuming that you have the priv directory with all certificates and fcm token in current directory and var directory with a config file, then you may start MongoosePush with the following command:
docker run -v `pwd`/priv:/opt/app/priv \
 -v `pwd`/var:/opt/app/var \
 -e PUSH_HTTPS_CERTFILE="/opt/app/priv/ssl/rest_cert.pem" \
 -e PUSH_HTTPS_KEYFILE="/opt/app/priv/ssl/rest_key.pem" \
 -it --rm mongooseim/mongoose-push:latest

 Local build prerequisites

	Elixir 1.5+ (http://elixir-lang.org/install.html)
	Erlang/OTP 19.3+NOTE: Some Erlang/OTP 20.x releases / builds contain TLS bug that prevents connecting to APNS servers.
When building with this Erlang version, please make sure that MongoosePushRuntimeTest test suite passes.
It is however highly recommended to build MongoosePush with Erlang/OTP 21.x.

	Rebar3 (just enter mix local.rebar)

Configuration

The whole configuration is contained in the config/{prod|dev|test}.exs file, depending on which MIX_ENV you will be using. You should use MIX_ENV=prod for production installations and MIX_ENV=dev for your development.
Let's examine config/dev.exs.

 RESTful API configuration

config :mongoose_push, MongoosePushWeb.Endpoint,
 https: [
 ip: {127, 0, 0, 1},
 port: 8443,
 keyfile: "priv/ssl/fake_key.pem",
 certfile: "priv/ssl/fake_cert.pem",
 otp_app: :mongoose_push
]
This part of the configuration relates only to the HTTPS endpoints exposed by MongoosePush. Here you can set an IP address (option: ip), a port, and paths to your HTTPS TLS certificates. You should ignore other options unless you are sure you know what you're doing (to learn more, explore phoenix documentation).
You may entirely skip the mongoose_push config entry to disable the HTTPS API and just use this project as an Elixir library.

 FCM configuration

Let's take a look at a sample FCM service configuration:
config :mongoose_push, fcm: [
 default: [
 appfile: "path/to/token.json",
 endpoint: "localhost",
 pool_size: 5,
 mode: :prod,
 tls_opts: []
]
]
This is a definition of a pool - each pool has a name and a configuration. It is possible to have multiple named pools with different configuration, which includes pool size, environment mode, etc. Currently the only reason you may want to do this is to create separate production and development pools which may be selected by an HTTP client by specifying matching :mode in their push request.
Each FCM pool may be configured by setting the following fields:
	appfile (required) - path to an FCM service account JSON file. Details on how to get one are in the Running from DockerHub section
	pool_size (required) - maximum number of used HTTP/2 connections to google's service
	mode (either :prod or :dev) - pool's mode. The HTTP client may select a pool used to push a notification by specifying a matching option in the request
	endpoint (optional) - URL override for the FCM service. Useful mainly in tests
	port (optional) - Port number override for the FCM service. Useful mainly in tests
	tags (optional) - a list of tags. Used when choosing a pool to match the request tags when sending a notification. More details: https://github.com/esl/sparrow#tags
	tls_opts (optional) - a list of raw options passed to the ssl:connect function call while connecting to FCM. When this option is omitted, it will default to a set of values that will verify the server certificate based on an internal CA chain. Providing this option overrides all defaults, effectively disabling certificate validation. Therefore passing this option is not recommended outside dev and test environments.

You may entirely skip the FCM config entry to disable FCM support.

 APNS configuration

Lets take a look at a sample APNS service configuration:
config :mongoose_push, apns: [
 dev: [
 cert: "priv/apns/dev_cert.pem",
 key: "priv/apns/dev_key.pem",
 mode: :dev,
 use_2197: false,
 pool_size: 5,
 tls_opts: []
],
 prod: [
 cert: "priv/apns/prod_cert.pem",
 key: "priv/apns/prod_key.pem",
 mode: :prod,
 use_2197: false,
 pool_size: 5,
 tls_opts: []
]
]
Just like for FCM, at the top level we can specify the named pools that have different configurations. For APNS this is especially useful since Apple delivers different APS certificates for development and production use. The HTTP client can select a named pool by providing a matching :mode in the HTTP request.
Each APNS pool may be configured by setting the following fields:
	cert (required) - relative path to APNS PEM certificate issued by Apple. This certificate has to be somewhere in the priv directory
	key (required) - relative path to PEM private key for APNS certificate issued by Apple. This file has to be somewhere in the priv directory
	pool_size (required) - maximum number of used HTTP/2 connections to the google's service
	mode (either :prod or :dev) - pool's mode. The HTTP client may select a pool used to push a notification by specifying the matching option in the request
	endpoint (optional) - URL override for APNS service. Useful mainly in tests
	port (optional) - Port number override for APNS service. Useful mainly in tests
	use_2197 (optional true or false) - whether to use an alternative port for APNS: 2197
	tags (optional) - a list of tags. Used when choosing a pool to match the request tags when sending a notification. More details: https://github.com/esl/sparrow#tags
	tls_opts (optional) - a list of raw options passed to the ssl:connect function call while connecting to APNS. When this option is omitted, it will default to a set of values that will verify the server certificate based on an internal CA chain. Providing this option overrides all defaults, effectively disabling certificate validation. Therefore passing this option is not recommended outside dev and test environments.

You may entirely skip the APNS config entry to disable APNS support.
Converting APNS files
If you happen to have APNS files in a pkcs12 format (.p12 or .pfx extension) you need to convert them to the PEM format which is understood by MongoosePush. Below you can find sample openssl commands which may be helpful.
Get cert from pkcs12 file
openssl pkcs12 -in YourAPNS.p12 -out YourCERT.pem -nodes -nokeys
Get key from pkcs12 file
openssl pkcs12 -in YourAPNS.p12 -out YourKEY.pem -nodes -nocerts

 Environment variables

Environment variables to configure a production release.
Settings for HTTP endpoint:
	PUSH_HTTPS_BIND_ADDR - Bind IP address of the HTTP endpoint. Default value in prod release is "127.0.0.1", but docker overrides this with "0.0.0.0"
	PUSH_HTTPS_PORT - The port of the MongoosePush HTTP endpoint. Please note that docker exposes only 8443 port, so changing this setting is not recommended
	PUSH_HTTPS_KEYFILE - Path to a PEM keyfile used for HTTP endpoint. This path should be either absolute or relative to root of the release (in the Docker container that's /opt/app). Default: priv/ssl/fake_key.pem.
	PUSH_HTTPS_CERTFILE - Path to a PEM certfile used for HTTP endpoint. This path should be either absolute or relative to root of the release (in the Docker container that's /opt/app). Default: priv/ssl/fake_cert.pem.
	PUSH_HTTPS_ACCEPTORS - Number of TCP acceptors to start

General settings:
	PUSH_LOGLEVEL - debug/info/warning/error - Log level of the application. info is the default one
	PUSH_LOGFORMAT - logfmt/json - Log format of the application. Defaults to logfmt for the dev and test environments, and to json for the prod environment.
	PUSH_FCM_ENABLED - true/false - Enable or disable FCM support. Disabled by default
	PUSH_APNS_ENABLED - true/false - Enable or disable APNS support. Disabled by default
	TLS_SERVER_CERT_VALIDATION - true/false - Enable or disable TLS
options for both FCM and APNS.
	PUSH_OPENAPI_EXPOSE_SPEC - true/false - Enable or disable OpenAPI specification endpoint support. If enabled, it will be available on /swagger.json HTTP path. Disabled by default
	PUSH_OPENAPI_EXPOSE_UI - true/false - Enable or disable SwaggerUI. If enabled, it will be available on /swaggerui. Disabled by default. Requires PUSH_OPENAPI_EXPOSE_SPEC to also be enabled.

Settings for FCM service:
	PUSH_FCM_ENDPOINT - Hostname of the FCM service. Set only for local testing. By default this option points to the Google's official hostname
	PUSH_FCM_APP_FILE - Path to the FCM service account JSON file. For details look at Running from DockerHub section
	PUSH_FCM_POOL_SIZE - Connection pool size for the FCM service

Settings for development APNS service:
	PUSH_APNS_DEV_ENDPOINT - Hostname of the APNS service. Set only for local testing. By default this option points to the Apple's official hostname
	PUSH_APNS_DEV_CERT - Path to Apple's development certfile used to communicate with APNS
	PUSH_APNS_DEV_KEY - Path to Apple's development keyfile used to communicate with APNS
	PUSH_APNS_DEV_KEY_ID - Key ID generated from Apple's developer console. For details look at the Running from DockerHub section required for token authentication
	PUSH_APNS_DEV_TEAM_ID - TEAM ID generated from Apple's developer console. For details look at the Running from DockerHub section required for token authenticaton
	PUSH_APNS_DEV_P8_TOKEN - Token generated from Apple's developer console. For details look at the Running from DockerHub section
	PUSH_APNS_DEV_USE_2197 - true/false - Enable or disable the use of an alternative 2197 port for APNS connections in development mode. Disabled by default
	PUSH_APNS_DEV_POOL_SIZE - Connection pool size for APNS service in development mode
	PUSH_APNS_DEV_DEFAULT_TOPIC - Default APNS topic to be set if the client app doesn't specify it with the API call. If this option is not set, MongoosePush will try to extract this value from the provided APNS certificate (the first topic will be assumed default). DEV certificates normally don't provide any topics, so this option can be safely left unset

Settings for production APNS service:
	PUSH_APNS_PROD_ENDPOINT - Hostname of the APNS service. Set only for local testing. By default this option points to the Apple's official hostname
	PUSH_APNS_PROD_CERT - Path to Apple's production certfile used to communicate with APNS
	PUSH_APNS_PROD_KEY - Path to Apple's production keyfile used to communicate with APNS
	PUSH_APNS_PROD_KEY_ID - Key ID generated from Apple's developer console. For details look at the Running from DockerHub section required for token authentication
	PUSH_APNS_PROD_TEAM_ID - TEAM ID generated from Apple's developer console. For details look at the Running from DockerHub section required for token authenticaton
	PUSH_APNS_PROD_P8_TOKEN - Token generated from Apple's developer console. For details look at the Running from DockerHub section
	PUSH_APNS_PROD_USE_2197 - true/false - Enable or disable the use of an alternative 2197 port for APNS connections in production mode. Disabled by default
	PUSH_APNS_PROD_POOL_SIZE - Connection pool size for APNS service in production mode
	PUSH_APNS_PROD_DEFAULT_TOPIC - Default APNS topic to be set if the client app doesn't specify it with the API call. If this option is not set, MongoosePush will try to extract this value from the provided APNS certificate (the first topic will be assumed default)

 TOML schema

IMPORTANT:
When a configuration option is defined in TOML file it can't be overwritten by environmental variables.
You can use both methods for different options though.

General keys
	general.logging.level (string, optional) - One of: debug/info/warning/error. If not set, falls back to the environment variable PUSH_LOGLEVEL or its default.
	general.logging.format (string, optional) - One of: logfmt/json - Log format of the application. If not set, falls back to the environment variable PUSH_LOGFORMAT or its default.
	general.https.bind.addr (string, optional) - Bind IP address of the HTTPS endpoint. If not set, falls back to the environment variable PUSH_HTTPS_BIND_ADDR or its default.
	general.https.bind.port (integer, optional) - Port of the HTTPS endpoint. If not set, falls back to the environment variable PUSH_HTTPS_PORT or its default.
	general.https.num_acceptors (integer, optional) - Number of TCP acceptors to start. If not set, falls back to the environment variable PUSH_HTTPS_ACCEPTORS or its default.
	general.https.certfile (string, optional) - Path to a PEM certfile used for HTTPS endpoint. If not set, falls back to the environment variable PUSH_HTTPS_CERTFILE or its default. See PUSH_HTTPS_CERTFILE documentation for more details.
	general.https.keyfile (string, optional) - Path to a PEM keyfile used for HTTPS endpoint. If not set, falls back to the environment variable PUSH_HTTPS_KEYFILE or its default. See PUSH_HTTPS_KEYFILE documentation for more details.
	general.https.cacertfile (string, optional) - Path to a PEM cacertfile used for HTTPS endpoint. If not set, falls back to the environment variable PUSH_HTTPS_CERTFILE or its default. See PUSH_HTTPS_CERTFILE documentation for more details.
	general.openapi.expose_spec (boolean, optional) - Enable or disable OpenAPI specification endpoint. If enabled, it will be available on /swagger.json HTTP path. If not set, falls back to the environment variable PUSH_OPENAPI_EXPOSE_SPEC or its default.
	general.openapi.expose_ui (boolean, optional) - Enable or disable SwaggerUI. If enabled, it will be available on /swaggerui HTTP path. If not set, falls back to the environment variable PUSH_OPENAPI_EXPOSE_UI or its default.

FCM keys
[[service.fcm]] (array, optional) - TOML Array representing a single FCM connection pool. Can have its own connection details like auth, and can be defined with a unique set of tags that can be later used when sending notifications to find a proper connection pool. If no service.fcm array entry is provided, FCM will be disabled. All following TOML keys are valid for any service.fcm array entry:
	service.fcm.tags (list(string), optional) - List of tags to identify this connection pool. When sending push notifications, you can provide a similar list of tags to "select" a correct connection pool. Notifications will be send only via a connection pool that defines all tags provided along with a notification request.
	service.fcm.connection.endpoint (string, optional) - Domain/Host of the FCM server. You should leave this not set to use official FCM servers.
	service.fcm.connection.port (integer, optional) - Port of the FCM server. You should leave this not set to use official FCM servers.
	service.fcm.connection.count (integer, optional) - Number of connections to open. Default is 5.
	service.fcm.auth.appfile (string, optional) - Path to the FCM "app file" from the FCM admin console. This path should be either absolute, or relative to root dir of the release (in Docker container that would be /opt/app). Default: priv/fcm/token.json.

APNS keys
[[service.apns]] (array, optional) - TOML Array representing a single APNS connection pool. Can have its own connection details like auth, and can be defined with a unique set of tags that can be later used when sending notifications to find a proper connection pool. If no service.apns array entry is provided, APNS will be disabled. All following TOML keys are valid for any service.apns array entry:
	service.apns.tags (list(string), optional) - List of tags to identify this connection pool. When sending push notifications, you can provide a similar list of tags to "select" a correct connection pool. Notifications will be send only via a connection pool that defines all tags provided along with the notification request.
	service.apns.connection.endpoint (string, optional) - Domain/Host of APNS server. You should leave this not set to use the official APNS servers.
	service.apns.connection.use_2197 (boolean, optional) - Port of APNS server (2197 or default). You should leave this not set to use the official APNS servers.
	service.apns.connection.count (integer, optional) - Number of connections to open. Default is 5.

If token authentication is to be used:
	service.apns.auth.token.key_id (string, required) - "Key ID" for this APNS token. See APNS documentation for more details.
	service.apns.auth.token.team_id (string, required) - "Team ID" for this APNS token. See APNS documentation for more details.
	service.apns.auth.token.tokenfile (string, required) - Path to this APNS token P8 file. This path should be either absolute, or relative to the root dir of the release (in the Docker container that would be /opt/app).

If the certificate authentication is to be used:
	service.apns.auth.certificate.keyfile (string, required) - Path to the PEM encoded keyfile. This path should be either absolute, or relative to root dir of the release (in the Docker container that would be /opt/app).
	service.apns.auth.certificate.certfile (string, required) - Path to the PEM encoded certfile. This path should be either absolute, or relative to root dir of the release (in the Docker container that would be /opt/app).

Please note that only one method of authentication can be used for any given pool. This means that setting service.apns.auth.certificate excludes service.apns.auth.token and vice versa. Providing both will result in a configuration error.
Example configuration
[general]
 [general.logging]
 level = "info"
 [general.https]
 bind = { addr = "0.0.0.0", port = 8443 }
 num_acceptors = 100
 certfile = "priv/ssl/fake_cert.pem"
 keyfile = "priv/ssl/fake_key.pem"
 cacertfile = "priv/ssl/fake_cert.pem"
 [general.openapi]
 expose_spec = true
 expose_ui = false

[[service.fcm]]
 tags = ["tag1", "tag2"]
 [service.fcm.connection]
 endpoint = "localhost"
 port = 443
 count = 10
 [service.fcm.auth]
 appfile = "priv/fcm/token.json"

[[service.fcm]]
 tags = ["another1", "another2"]
 [service.fcm.connection]
 endpoint = "localhost"
 port = 443
 count = 10
 [service.fcm.auth]
 appfile = "priv/fcm/token.json"

[[service.apns]]
 mode = "dev"
 default_topic = "some.topic"
 tags = ["tag1", "tag2"]
 [service.apns.connection]
 endpoint = "localhost"
 use_2197 = true
 count = 10
 [service.apns.auth.token]
 key_id = "some id"
 team_id = "my team"
 tokenfile = "priv/apns/token.p8"

[[service.apns]]
 mode = "prod"
 default_topic = "some.topic"
 tags = ["tag1", "tag2"]
 [service.apns.connection]
 endpoint = "localhost"
 use_2197 = false
 count = 10
 [service.apns.auth.certificate]
 keyfile = "priv/apns/dev_key.pem"
 certfile = "priv/apns/dev_cert.pem"

Local build

 Prerequisites

	Elixir 1.5+ (http://elixir-lang.org/install.html)
	Erlang/OTP 19.3+NOTE: Some Erlang/OTP 20.x releases / builds contain a TLS bug that prevents connecting to APNS servers.
When building with this Erlang version, please make sure that the MongoosePushRuntimeTest test suite passes.
It is however highly recommended to build MongoosePush with Erlang/OTP 21.x.

	Rebar3 (just enter mix local.rebar)

 Production release

The build step is really easy. Just type in the root of the repository:
MIX_ENV=prod mix do deps.get, compile, certs.dev, release

After this step you may try to run the service via:
_build/prod/rel/mongoose_push/bin/mongoose_push foreground

Yeah, I know... It crashed. Running this service is fast and simple but unfortunately you can't have push notifications without a properly configured FCM and/or APNS service. You can find out how to properly configure it in the configuration section.

 Development release

Again, an easy step:
MIX_ENV=dev mix do deps.get, compile, certs.dev, release

The development release is by default configured to connect to a local APNS / FCM mock.
This configuration may be changed as needed in the config/dev.exs file.
For now, let's just start those mocks so that we can use the default dev configuration:
docker-compose -f test/docker/docker-compose.mocks.yml up -d

After this step you may try to run the service via:
_build/dev/rel/mongoose_push/bin/mongoose_push console

Running tests

One thing that you need to do once before running any tests is generating fake certificates for APNS/HTTPS (it doesn't matter which MIX_ENV you run this in):
mix certs.dev

Also, you'll need to have docker-compose installed and present in your path to run any tests.

 TL;DR

Unit tests
MIX_ENV=test mix do test.env.up, test, test.env.down

Integration tests
MIX_ENV=integration mix do test.env.up, test, test.env.down

 Basic tests (non-release)

Basic tests require FCM and APNS mock services to be present at the time of running the tests:
We start the mocks
mix test.env.up

Now we can just run tests
mix test

Optionally we can shut the mocks down. If you want to rerun the tests, you may skip this step so that
you don't need to re-invoke `mix test.env.up`. Mocks are being reset by each test separately,
so you don't need to worry about their state.
mix test.env.down

 Integration tests (using production-grade release)

Integration tests can be run in exactly the same way as described above for "basic" tests, with one exception:
All Mix commands need to be invoked in the MIX_ENV=integration environment:
We start the mocks AND MongoosePush docker container.
This may take a few minutes on the first run, as the MongoosePush docker image needs
to be built from scratch. Subsequent runs should be much faster.
You need to rerun this command each time you make changes in the app code,
as MongoosePush needs to be rebuilt and redeployed!
MIX_ENV=integration mix test.env.up

Now we can just run tests
MIX_ENV=integration mix test

Optionally we can shut the mocks down. If you want to rerun tests, you may skip this step. To do that
you don't need to re-invoke `mix test.env.up`. Mocks are being reset by each test separately,
so you don't need to worry about their state.
MIX_ENV=integration mix test.env.down

 Test environment setup

	mix test.env.up - runs docker-compose up -d --build with the following compose files:	for MIX_ENV=test and MIX_ENV=dev: test/docker/docker-compose.mocks.yml
	for MIX_ENV=integration: test/docker/docker-compose.mocks.yml and test/docker/docker-compose.mpush.yml

	mix test.env.down - runs docker-compose down on the same compose files as mix test.env.up
	mix test.env.wait X - waits up to X milliseconds for the services from mix test.env.up to become available. Prints an error if they don't.

Docker

 Running from DockerHub

We provide prebuilt MongoosePush images. Configuration requires either an FCM token, APNS certificates or an APNS token. Depending on your usecase, you can have some or all of them in a standalone MongoosePush instance or using a docker container.
For the full configuration you need to set up the following directory structure:
	priv/	ssl/	rest_cert.pem - The HTTP endpoint certificate
	rest_key.pem - private key for the HTTP endpoint certificate (has to be unencrypted)

	apns/	prod_cert.pem - Production APNS app certificate
	prod_key.pem - Production APNS app certificate's private key (has to be unencrypted)
	dev_cert.pem - Development APNS app certificate
	dev_key.pem - Development APNS app certificate's private key (has to be unencrypted)
	token.p8 - APNS authentication token

	fcm/	token.json - FCM service account JSON file

	var/	config.toml - TOML configuration file (optional)

If you want to use the APNS token authentication you need to provide the token and set both key_id and team_id environment variables. To see how to obtain the token and key_id read this.
To see how to obtain team_id read this.
FCM JSON file can be generated by the Firebase console (https://console.firebase.google.com). Go to your project -> Project Settings -> Service accounts -> Generate new private key.
TOML config file is optional. It allows to fully configure the service but basic configuration can be achieved via environmental variables only.
Assuming that you have the priv directory with all certificates and fcm token in current directory and var directory with a config file, then you may start MongoosePush with the following command:
docker run -v `pwd`/priv:/opt/app/priv \
 -v `pwd`/var:/opt/app/var \
 -e PUSH_HTTPS_CERTFILE="/opt/app/priv/ssl/rest_cert.pem" \
 -e PUSH_HTTPS_KEYFILE="/opt/app/priv/ssl/rest_key.pem" \
 -it --rm mongooseim/mongoose-push:latest

 Building

Building a docker image is really easy, just type:
docker build . -t mpush:latest

As a result of this command you get access to the mpush:latest docker image. You may run it by typing:
docker run -it --rm mpush:latest foreground

The docker image that you have just built, exposes the port 8443 for the HTTP API of MongoosePush.
It contains a VOLUME for path /opt/app/priv - it is handy for injecting APNS and HTTP API certificates since by default the docker image comes with test, self-signed certificates.

 Configuration (basic)

The docker image of MongoosePush contains common, basic configuration that is generated from config/prod.exs. All useful options may be overridden via environment variables. You can use TOML config for more control. However, if this is not enough, then you need to prepare your own config/prod.exs before image build.

HTTP API

If for some reason you need Swagger specs for this RESTful service, there is a swagger endpoint available via an HTTP path /swagger.json

 Request

There is only one endpoint at the moment:
	POST /{version}/notification/{device_id}

As you can imagine, {device_id} should be replaced with a device ID/Token generated by your push notification provider (FCM or APNS). The notification should be sent as a JSON payload of this request. A minimal JSON request could be like this:
{
 "service": "apns",
 "alert":
 {
 "body": "notification's text body",
 "title": "notification's title"
 }
}
The full list of options contains the following:
	service (required, apns or fcm) - push notifications provider to be used for this notification
	mode (optional, prod (default) or dev) - allows for selecting named pool configured in MongoosePush
	priority (optional) - Either normal or high. Those values are used without changes for FCM. For APNS however, normal maps to priority 5, while high maps to priority 10. Please refer to FCM / APNS documentation for more details on those values. By default priority is not set at all, therefore the push notification service decides which value is used by default.
	time_to_live (optional) - Maximum lifespan of an FCM notification. For more details, please, refer to the official FCM documentation.
	mutable_content (optional, true / false (default)) - Only applicable to APNS. Sets "mutable-content=1" in the APNS payload.
	topic (optional, APNS specific) - if the APNS certificate configured in MongoosePush allows for multiple applications, this field selects the application. Please refer to the APNS documentation for more details.
	tags (optional) - a list of tags used to choose a pool with matching tags. To see how tags work read: https://github.com/esl/sparrow#tags
	data (optional) - custom JSON structure sent to the target device. For APNS, all keys from this structure are merged into the highest level APS message (the one that holds the 'aps' key), while for FCM the whole data json structure is sent as FCM's data payload along with notification.
	alert (optional) - JSON structure that if provided will send a non-silent notification with the following fields:	body (required) - text body of the notification
	title (required) - short title of the notification
	click_action (optional) - for FCM its activity to run when notification is clicked. For APNS its category to invoke. Please refer to the Android/iOS documentation for more details about this action
	tag (optional, FCM specific) - notifications aggregation key
	badge (optional, APNS specific) - unread notifications count
	sound (optional) - sound that should be play when the notification arrives. Please refer to the FCM / APNS documentation for more details.

Please note that either alert and data has to be provided (also can be both).
If you only specify alert, the request will result in a classic, simple notification.
If you only specify data, the request will result in a "silent" notification, i.e. the client will receive the data and will be able to decide whether and how the notification should be shown to the user.
If you specify both alert and data, the target device will receive both notification and the custom data payload to process.

 Response

Description of the possible server responses
	200 "OK" - the request was successful.
	400 {"reason" : "invalid_request"|"no_matching_pool"} - the request was invalid.
	410 {"reason" : "unregistered"} - the device was not registered.
	413 {"reason" : "payload_too_large"} - the payload was too large.
	429 {"reason" : "too_many_requests"} - there were too many requests to the server.
	503 {"reason" : "service_internal"|"internal_config"|"unspecified"} - the internal service or configuration error occurred.
	520 {"reason" : "unspecified"} - the unknown error occurred.
	500 {"reason" : reason} - the server internal error occurred,
specified by reason.

Healthcheck

MongoosePush exposes a /healthcheck endpoint, from which you can get information about the current status of all connections in a JSON format, grouped by connection pool. The response structure is described in the following RFC draft. An example with 2 pools, one being connected to the service and the other one not, would look like this:
{
 "description": "Health of MongoosePush connections to FCM and APNS services",
 "details": {
 "pool:pool1": [
 {
 "output": {
 "connected": 5,
 "disconnected": 0
 },
 "status": "pass",
 "time": "2020-07-01T11:58:30.093318Z"
 }
],
 "pool:pool2": [
 {
 "output": {
 "connected": 0,
 "disconnected": 5
 },
 "status": "fail",
 "time": "2020-07-01T11:58:30.102291Z"
 }
]
 },
 "releaseID": "2.0.2",
 "status": "pass",
 "version": "2"
}
If all the connections are down the response status is 503; in all the other cases, it's 200.
Please note that it's not recommended to use this frequently as it puts an extra load on the worker processes.

Metrics

MongoosePush 2.1 provides metrics in the Prometheus format on the /metrics endpoint.
This is a breaking change compared to previous releases.
Existing dashboards will need to be updated.
It is important to know that metrics are created inside MongoosePush only when a certain event happens.
This may mean that a freshly started MongoosePush node will not have all the possible metrics available yet.

 Default dashboard

MongoosePush 2.1.1 provides default Grafana dashboards where we can see some of the available metrics.
You can create the dashboards using the following command:
make dashboards

This starts and configures two containers:
	mpush-grafana - running Grafana, available at http://127.0.0.1:3000/
	mpush-prometheus - running Prometheus, which scraps the metrics from the /metrics endpoint, available at http://127.0.0.1:9090/

Once we login to the Grafana container with the default (login: admin, password: admin) credentials we can see two dashboards:
	MongoosePush Metrics - displaying metrics related to notification send times and successful/failed connections.
	MongoosePush VM - this dashboard contains metrics related to the VM like memory allocations or lengths of the run queues.

You can stop the docker containers that are running Grafana and Prometheus using the following command:
make clean-dashboards

 Available metrics

Histograms
For more details about the histogram metric type please go to https://prometheus.io/docs/concepts/metric_types/#histogram
Notification sent time
mongoose_push_notification_send_time_microsecond_bucket{error_category=${CATEGORY},error_reason=${REASON},service=${SERVICE},status=${STATUS},le=${LE}}
mongoose_push_notification_send_time_microsecond_sum{error_category=${CATEGORY},error_reason=${REASON},service=${SERVICE},status=${STATUS}}
mongoose_push_notification_send_time_microsecond_count{error_category=${CATEGORY},error_reason=${REASON},service=${SERVICE},status=${STATUS}}
Where:
	STATUS is "success" for the successful notifications or "error" in all other cases
	SERVICE is either "apns" or "fcm"
	CATEGORY is an arbitrary error category term (in case of status="error") or an empty string (when status="success")
	REASON is an arbitrary error reason term (in case of status="error") or an empty string (when status="success")
	LE defines the upper inclusive bound (less than or equal) values for buckets, currently 1000, 10_000, 25_000, 50_000, 100_000, 250_000, 500_000, 1000_000 or +Inf

This histogram metric shows the distribution of times needed to:
	Select a worker (this may include waiting time when all workers are busy).
	Send a request.
	Get a response from push notifications provider.

HTTP/2 requests
sparrow_h_worker_handle_duration_microsecond_bucket{le=${LE}}
sparrow_h_worker_handle_duration_microsecond_sum{le=${LE}}
sparrow_h_worker_handle_duration_microsecond_count{le=${LE}}
Where:
	LE defines the upper inclusive bound (less than or equal) values for buckets, currently 1000, 10_000, 25_000, 50_000, 100_000, 250_000, 500_000, 1000_000 or +Inf

This histogram metric shows the distribution of times needed to handle and send a request. This includes:
	Open a new stream within an already established channel.
	Send a request.

NOTE
A bucket of value 250_000 will keep the count of measurements that are less than or equal to 250_000.
A measurement of value 51_836 will be added to all the buckets where the upper bound is greater than 51_836.
In this case these are buckets 100_000, 250_000, 500_000, 1000_000 and +Inf

Counters
	mongoose_push_supervisor_init_count{service=${SERVICE}} - Counts the number of push notification service supervisor starts.
The SERVICE variable can take "apns" or "fcm" as a value.
This metric is updated when MongoosePush starts, and later on when the underlying supervision tree is terminated and the error is propagated to the main application supervisor.
	mongoose_push_apns_state_init_count - Counts the number of APNS state initialisations.
	mongoose_push_apns_state_terminate_count - Counts the number of APNS state terminations.
	mongoose_push_apns_state_get_default_topic_count - Counts the number of default topic reads from cache.
	sparrow_h_worker_init_count - Counts the number of h2_worker starts.
	sparrow_h_worker_terminate_count - Counts the number of h2_worker terminations.
	sparrow_h_worker_conn_success_count - Counts the number of successful h2_worker connections.
	sparrow_h_worker_conn_fail_count - Counts the number of failed h2_worker connections.
	sparrow_h_worker_conn_lost_count - Counts the number of lost h2_worker connections.
	sparrow_h_worker_request_success_count - Counts the number of successful h2_worker requests.
	sparrow_h_worker_request_error_count - Counts the number of failed h2_worker requests.

Gauge
	sparrow_pools_warden_pools_gauge - Current number of worker pools.
	sparrow_pools_warden_workers_gauge{pool=${POOL}} - Current number of workers operated by a given worker POOL.
	vm_memory_total - Total amount of currently allocated memory.
	vm_memory_processes - Amount of memory currently allocated for processes.
	vm_memory_processes_used - Amount of memory currently used for processes.
	vm_memory_binary - Amount of memory currently allocated for binaries.
	vm_memory_ets - Amount of memory currently allocated for ETS tables.
	vm_total_run_queue_lengths_total - A sum of all current run queue lengths.
	vm_total_run_queue_lengths_cpu - A sum of current CPU schedulers' run queue lengths.
	vm_system_counts_process_count - Number of process currently existing at the local node.

 How to quickly see all metrics

curl -k https://127.0.0.1:8443/metrics

The above command assumes that MongoosePush runs on localhost and listens on port 8443.
Please, mind the HTTPS protocol, metrics are hosted on the same port than all the other API endpoints.

 Prometheus configuration

When configuring Prometheus, it's important to:
	set the scheme to https,
	set the insecure_skip_verify to true if the default self-signed certificates are used.

scrape_configs:
 - job_name: 'mongoose-push'
 scheme: 'https' #MongoosePush exposes encrypted endpoint - HTTPS
 tls_config: #The default certs used by MongoosePush are self-signed
 insecure_skip_verify: true #For checking purposes we can ignore certs verification
 static_configs:
 - targets: ['mongoose-push:8443']
 labels:
 group: 'production'

MongoosePush

MongoosePush is simple (seriously) service providing ability to send push
notification to FCM (Firebase Cloud Messaging) and/or
APNS (Apple Push Notification Service). What makes it cool is not only
simplicity but also support for newest and fastest HTTP/2 based APIs
for both services.
At this moment only those two services are supported but in future
MongoosePush may and probably will support even more Push Notification Services.

 Summary

 Types

 alert()

 alert_key()

 data()

 data_key()

 error()

 mode()

 req_key()

 Available keys in request map

 request()

 Raw push request. The keys: :service and at least one of :alert or :body are required

 service()

 Functions

 push(device_id, request)

 Push notification defined by request to device with device_id.
request has to define at least :service type (:fcm or :apns) and
at least one of :alert or :data. If alert is not present, the notification will be send as 'silent'.
Please refer to yours push notification service provider's documentation for more details on
silent notifications.

 Types

 Link to this type

 alert()

 View Source

 @type alert() :: %{required(alert_key()) => atom() | String.t() | integer()}

 Link to this type

 alert_key()

 View Source

 @type alert_key() :: :title | :body | :tag | :badge | :click_action | :sound

 Link to this type

 data()

 View Source

 @type data() :: %{required(data_key()) => term()}

 Link to this type

 data_key()

 View Source

 @type data_key() :: atom() | String.t()

 Link to this type

 error()

 View Source

 @type error() ::
 {:generic, :no_matching_pool | :unable_to_connect | :connection_lost | atom()}

 Link to this type

 mode()

 View Source

 @type mode() :: :dev | :prod

 Link to this type

 req_key()

 View Source

 @type req_key() ::
 :service
 | :mode
 | :alert
 | :data
 | :topic
 | :priority
 | :time_to_live
 | :mutable_content
 | :tags

Available keys in request map

 Link to this type

 request()

 View Source

 @type request() :: %{
 required(req_key()) => atom() | String.t() | integer() | alert() | data()
}

Raw push request. The keys: :service and at least one of :alert or :body are required

 Link to this type

 service()

 View Source

 @type service() :: :fcm | :apns

 Functions

 Link to this function

 push(device_id, request)

 View Source

 @spec push(String.t(), request()) ::
 :ok | {:error, MongoosePush.Service.error()} | {:error, error()}

Push notification defined by request to device with device_id.
request has to define at least :service type (:fcm or :apns) and
at least one of :alert or :data. If alert is not present, the notification will be send as 'silent'.
Please refer to yours push notification service provider's documentation for more details on
silent notifications.
Field :data may contain any custom data that have to be delivered to the target device, while
field :alert, if present, must contain at least :title and :body. The :alert field may also
contain: :sound, :tag (option specific to FCM service), :topic and :bagde (specific to APNS).
Please consult push notification service provider's documentation for more informations on those
optional fields.
Field :priority may be used to set priority for message on both FCM and APNS. The values are
native for FCM and for APNS - :normal is "5" and :high is 10.
:mode option is also specific to APNS but it only selects appropriate
worker pool (with :mode set to either :prod or :dev).
Default value to :mode is :prod.
Field :mutable_content (specific to APNS) can be set to true (by default false) to enable
this feature (please consult APNS documentation for more information).

MongoosePushWeb.HealthcheckController

 Summary

 Functions

 send(conn, map)

 Functions

 Link to this function

 send(conn, map)

 View Source

MongoosePush.API behaviour

 Summary

 Callbacks

 to_status(arg1)

 Callbacks

 Link to this callback

 to_status(arg1)

 View Source

 @callback to_status(:ok | {:error, term()}) ::
 {non_neg_integer(),
 %{details: atom() | String.t()} | %{reason: atom() | String.t()} | nil}

MongoosePush.API.V1.ResponseEncoder

Module for handling internal responses to V1 HTTP2 codes

 Summary

 Functions

 to_status(return_val)

 Callback implementation for MongoosePush.API.to_status/1.

 Functions

 Link to this function

 to_status(return_val)

 View Source

 @spec to_status(
 :ok
 | {:error, MongoosePush.Service.error()}
 | {:error, MongoosePush.error()}
) :: {non_neg_integer(), %{details: atom() | String.t()} | nil}

Callback implementation for MongoosePush.API.to_status/1.

MongoosePush.API.V2.ResponseEncoder

Module for handling internal responses to V2 HTTP2 codes

 Summary

 Functions

 to_status(arg1)

 Callback implementation for MongoosePush.API.to_status/1.

 Functions

 Link to this function

 to_status(arg1)

 View Source

 @spec to_status(
 :ok
 | {:error, MongoosePush.Service.error()}
 | {:error, MongoosePush.error()}
) :: {non_neg_integer(), %{details: atom() | String.t()} | nil}

Callback implementation for MongoosePush.API.to_status/1.

MongoosePush.API.V3.ResponseEncoder

Module for handling internal responses to V3 HTTP2 codes

 Summary

 Functions

 to_status(arg1)

 Callback implementation for MongoosePush.API.to_status/1.

 Functions

 Link to this function

 to_status(arg1)

 View Source

 @spec to_status(
 :ok
 | {:error, MongoosePush.Service.error()}
 | {:error, MongoosePush.error()}
) :: {non_neg_integer(), %{reason: atom() | String.t()} | nil}

Callback implementation for MongoosePush.API.to_status/1.

MongoosePush.Config.Utils

 Summary

 Functions

 parse_bind_addr(string_addr)

 Used by prod.exs to parse env variables to inet-style IP addresses

 Functions

 Link to this function

 parse_bind_addr(string_addr)

 View Source

Used by prod.exs to parse env variables to inet-style IP addresses

MongoosePush.Logger.Common

Common logs formatters' helper functions

 Summary

 Functions

 flatten_metadata(metadata)

 Functions

 Link to this function

 flatten_metadata(metadata)

 View Source

MongoosePush.Logger.JSON

Module responsible for JSON-specific logs formatting

 Summary

 Functions

 format(level, message, arg, metadata)

 Functions

 Link to this function

 format(level, message, arg, metadata)

 View Source

MongoosePush.Logger.LogFmt

Module responsible for FMT-specific logs formatting

 Summary

 Functions

 format(level, message, arg, metadata)

 Functions

 Link to this function

 format(level, message, arg, metadata)

 View Source

MongoosePush.Metrics.TelemetryMetrics

Module responsible for updating Telemetry metrics

 Summary

 Functions

 child_spec(_)

 metrics()

 periodic_measurements()

 pooler()

 running_pools()

 Functions

 Link to this function

 child_spec(_)

 View Source

 Link to this function

 metrics()

 View Source

 Link to this function

 periodic_measurements()

 View Source

 Link to this function

 pooler()

 View Source

 Link to this function

 running_pools()

 View Source

MongoosePush.Service behaviour

Generic interface for push notifications services.

 Summary

 Types

 error()

 Error tuple with unified internal representation and exact reason returned by service

 error_reason()

 error_type()

 notification()

 options()

 Callbacks

 choose_pool(mode, list)

 prepare_notification(t, request, pool_name)

 push(notification, t, pool_name, options)

 supervisor_entry(arg1)

 Types

 Link to this type

 error()

 View Source

 @type error() :: {error_type(), error_reason()}

Error tuple with unified internal representation and exact reason returned by service

 Link to this type

 error_reason()

 View Source

 @type error_reason() :: atom()

 Link to this type

 error_type()

 View Source

 @type error_type() ::
 :invalid_request
 | :internal_config
 | :auth
 | :unregistered
 | :too_many_requests
 | :unspecified
 | :service_internal
 | :payload_too_large
 | :unknown

 Link to this type

 notification()

 View Source

 @type notification() :: term()

 Link to this type

 options()

 View Source

 @type options() :: [Keyword.t()]

 Callbacks

 Link to this callback

 choose_pool(mode, list)

 View Source

 @callback choose_pool(MongoosePush.mode(), [atom()]) ::
 MongoosePush.Application.pool_name() | nil

 Link to this callback

 prepare_notification(t, request, pool_name)

 View Source

 @callback prepare_notification(
 String.t(),
 MongoosePush.request(),
 MongoosePush.Application.pool_name()
) :: notification()

 Link to this callback

 push(notification, t, pool_name, options)

 View Source

 @callback push(
 notification(),
 String.t(),
 MongoosePush.Application.pool_name(),
 options()
) :: :ok | {:error, error()} | {:error, MongoosePush.error()}

 Link to this callback

 supervisor_entry(arg1)

 View Source

 @callback supervisor_entry([MongoosePush.Application.pool_definition()] | nil) ::
 {module(), term()}

MongoosePush.Service.APNS

APNS (apple Push Notification Service) service provider implementation.

 Summary

 Functions

 choose_pool(mode, tags \\ [])

 Callback implementation for MongoosePush.Service.choose_pool/2.

 prepare_notification(device_id, request, pool)

 Callback implementation for MongoosePush.Service.prepare_notification/3.

 push(notification, device_id, pool, opts \\ [])

 Callback implementation for MongoosePush.Service.push/4.

 supervisor_entry(pool_configs)

 Callback implementation for MongoosePush.Service.supervisor_entry/1.

 unify_error(reason)

 Functions

 Link to this function

 choose_pool(mode, tags \\ [])

 View Source

 @spec choose_pool(MongoosePush.mode(), [any()]) ::
 MongoosePush.Application.pool_name() | nil

Callback implementation for MongoosePush.Service.choose_pool/2.

 Link to this function

 prepare_notification(device_id, request, pool)

 View Source

 @spec prepare_notification(String.t(), MongoosePush.request(), atom()) ::
 MongoosePush.Service.notification()

Callback implementation for MongoosePush.Service.prepare_notification/3.

 Link to this function

 push(notification, device_id, pool, opts \\ [])

 View Source

 @spec push(
 MongoosePush.Service.notification(),
 String.t(),
 MongoosePush.Application.pool_name(),
 MongoosePush.Service.options()
) ::
 :ok | {:error, MongoosePush.Service.error()} | {:error, MongoosePush.error()}

Callback implementation for MongoosePush.Service.push/4.

 Link to this function

 supervisor_entry(pool_configs)

 View Source

 @spec supervisor_entry([MongoosePush.Application.pool_definition()] | nil) ::
 {module(), term()}

Callback implementation for MongoosePush.Service.supervisor_entry/1.

 Link to this function

 unify_error(reason)

 View Source

 @spec unify_error(MongoosePush.Service.error_reason()) ::
 MongoosePush.Service.error() | MongoosePush.error()

MongoosePush.Service.APNS.ErrorHandler

Module responsible for handling errors returned by APNS service

 Summary

 Functions

 translate_error_reason(reason)

 Functions

 Link to this function

 translate_error_reason(reason)

 View Source

 @spec translate_error_reason(
 MongoosePush.Service.error_reason()
 | {MongoosePush.Service.error_reason(), any()}
) :: MongoosePush.Service.error()

MongoosePush.Service.APNS.State

Module for storing state of apns APNS configurations, namely default topics

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_default_topic(pool_name)

 start_link(arg)

 Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 get_default_topic(pool_name)

 View Source

 Link to this function

 start_link(arg)

 View Source

MongoosePush.Service.APNS.Supervisor

APNS module supervising Sparrow's PoolSupervisor and APNS State

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(arg)

 Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_link(arg)

 View Source

 @spec start_link([MongoosePush.Application.pool_definition()]) ::
 Supervisor.on_start()

MongoosePush.Service.FCM

FCM (Firebase Cloud Messaging) service provider implementation.

 Summary

 Functions

 choose_pool(mode, tags \\ [])

 Callback implementation for MongoosePush.Service.choose_pool/2.

 prepare_notification(device_id, request, pool)

 Callback implementation for MongoosePush.Service.prepare_notification/3.

 push(notification, device_id, pool, opts \\ [])

 Callback implementation for MongoosePush.Service.push/4.

 supervisor_entry(pools_configs)

 Callback implementation for MongoosePush.Service.supervisor_entry/1.

 unify_error(reason)

 Functions

 Link to this function

 choose_pool(mode, tags \\ [])

 View Source

 @spec choose_pool(MongoosePush.mode(), [any()]) ::
 MongoosePush.Application.pool_name() | nil

Callback implementation for MongoosePush.Service.choose_pool/2.

 Link to this function

 prepare_notification(device_id, request, pool)

 View Source

 @spec prepare_notification(String.t(), MongoosePush.request(), atom()) ::
 MongoosePush.Service.notification()

Callback implementation for MongoosePush.Service.prepare_notification/3.

 Link to this function

 push(notification, device_id, pool, opts \\ [])

 View Source

 @spec push(
 MongoosePush.Service.notification(),
 String.t(),
 MongoosePush.Application.pool_name(),
 MongoosePush.Service.options()
) ::
 :ok | {:error, MongoosePush.Service.error()} | {:error, MongoosePush.error()}

Callback implementation for MongoosePush.Service.push/4.

 Link to this function

 supervisor_entry(pools_configs)

 View Source

 @spec supervisor_entry([MongoosePush.Application.pool_definition()] | nil) ::
 {module(), term()}

Callback implementation for MongoosePush.Service.supervisor_entry/1.

 Link to this function

 unify_error(reason)

 View Source

 @spec unify_error(MongoosePush.Service.error_reason()) ::
 MongoosePush.Service.error() | MongoosePush.error()

MongoosePush.Service.FCM.ErrorHandler

Module responsible for handling errors returned by FCM service.

 Summary

 Functions

 translate_error_reason(reason)

 Functions

 Link to this function

 translate_error_reason(reason)

 View Source

 @spec translate_error_reason(
 MongoosePush.Service.error_reason()
 | {MongoosePush.Service.error_reason(), any()}
) :: MongoosePush.Service.error()

MongoosePush.Service.FCM.Pool.Supervisor

This module is responsible for setting up Sparrow's FCM Supervisor

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(arg)

 Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_link(arg)

 View Source

 @spec start_link([MongoosePush.Application.pool_definition()]) ::
 Supervisor.on_start()

MongoosePush.Service.FCM.Pools

This module is responsible for worker pools management. It provides several
utility functions that help with e.g. selecting workers for given pool of the
service.

 Summary

 Functions

 pool_size(service, name)

 Returns size of the pool

 pools_by_mode()

 Returns lists of pool names that have selected :mode set

 select_worker()

 Return random worker name for given service and with given :mode set

 worker_name(type, name, num)

 Returns worker name based of the service type, worker name and its id

 Functions

 Link to this function

 pool_size(service, name)

 View Source

 @spec pool_size(MongoosePush.service(), atom()) :: integer()

Returns size of the pool

 Link to this function

 pools_by_mode()

 View Source

 @spec pools_by_mode() :: [atom()]

Returns lists of pool names that have selected :mode set

 Link to this function

 select_worker()

 View Source

 @spec select_worker() :: atom()

Return random worker name for given service and with given :mode set

 Link to this function

 worker_name(type, name, num)

 View Source

 @spec worker_name(atom(), atom(), integer()) :: atom()

Returns worker name based of the service type, worker name and its id

MongoosePushWeb

The entrypoint for defining your web interface, such
as controllers, views, channels and so on.
This can be used in your application as:
use MongoosePushWeb, :controller
use MongoosePushWeb, :view
The definitions below will be executed for every view,
controller, etc, so keep them short and clean, focused
on imports, uses and aliases.
Do NOT define functions inside the quoted expressions
below. Instead, define any helper function in modules
and import those modules here.

 Summary

 Functions

 __using__(which)

 When used, dispatch to the appropriate controller/view/etc.

 controller()

 router()

 Functions

 Link to this macro

 __using__(which)

 View Source

 (macro)

When used, dispatch to the appropriate controller/view/etc.

 Link to this function

 controller()

 View Source

 Link to this function

 router()

 View Source

MongoosePushWeb.APIv1.NotificationController

 Summary

 Functions

 open_api_operation(action)

 send(conn, map)

 send_operation()

 Functions

 Link to this function

 open_api_operation(action)

 View Source

 Link to this function

 send(conn, map)

 View Source

 Link to this function

 send_operation()

 View Source

 @spec send_operation() :: OpenApiSpex.Operation.t()

MongoosePushWeb.APIv2.NotificationController

 Summary

 Functions

 open_api_operation(action)

 send(conn, map)

 send_operation()

 Functions

 Link to this function

 open_api_operation(action)

 View Source

 Link to this function

 send(conn, map)

 View Source

 Link to this function

 send_operation()

 View Source

 @spec send_operation() :: OpenApiSpex.Operation.t()

MongoosePushWeb.APIv3.NotificationController

 Summary

 Functions

 open_api_operation(action)

 send(conn, map)

 send_operation()

 Functions

 Link to this function

 open_api_operation(action)

 View Source

 Link to this function

 send(conn, map)

 View Source

 Link to this function

 send_operation()

 View Source

 @spec send_operation() :: OpenApiSpex.Operation.t()

MongoosePushWeb.ApiSpec

MongoosePushWeb.Endpoint

 Summary

 Functions

 broadcast(topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast/3.

 broadcast!(topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast!/3.

 broadcast_from(from, topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast_from/4.

 broadcast_from!(from, topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast_from!/4.

 call(conn, opts)

 Callback implementation for Plug.call/2.

 child_spec(opts)

 Returns the child specification to start the endpoint
under a supervision tree.

 config(key, default \\ nil)

 Returns the endpoint configuration for key

 config_change(changed, removed)

 Reloads the configuration given the application environment changes.

 host()

 Returns the host for the given endpoint.

 init(opts)

 Callback implementation for Plug.init/1.

 local_broadcast(topic, event, msg)

 Callback implementation for Phoenix.Endpoint.local_broadcast/3.

 local_broadcast_from(from, topic, event, msg)

 Callback implementation for Phoenix.Endpoint.local_broadcast_from/4.

 path(path)

 Generates the path information when routing to this endpoint.

 script_name()

 Generates the script name.

 server_info(scheme)

 Returns the address and port that the server is running on

 start_link(opts \\ [])

 Starts the endpoint supervision tree.

 static_integrity(path)

 Generates a base64-encoded cryptographic hash (sha512) to a static file
in priv/static. Meant to be used for Subresource Integrity with CDNs.

 static_lookup(path)

 Returns a two item tuple with the first item being the static_path
and the second item being the static_integrity.

 static_path(path)

 Generates a route to a static file in priv/static.

 static_url()

 Generates the static URL without any path information.

 struct_url()

 Generates the endpoint base URL but as a URI struct.

 subscribe(topic, opts \\ [])

 Callback implementation for Phoenix.Endpoint.subscribe/2.

 unsubscribe(topic)

 Callback implementation for Phoenix.Endpoint.unsubscribe/1.

 url()

 Generates the endpoint base URL without any path information.

 Functions

 Link to this function

 broadcast(topic, event, msg)

 View Source

Callback implementation for Phoenix.Endpoint.broadcast/3.

 Link to this function

 broadcast!(topic, event, msg)

 View Source

Callback implementation for Phoenix.Endpoint.broadcast!/3.

 Link to this function

 broadcast_from(from, topic, event, msg)

 View Source

Callback implementation for Phoenix.Endpoint.broadcast_from/4.

 Link to this function

 broadcast_from!(from, topic, event, msg)

 View Source

Callback implementation for Phoenix.Endpoint.broadcast_from!/4.

 Link to this function

 call(conn, opts)

 View Source

Callback implementation for Plug.call/2.

 Link to this function

 child_spec(opts)

 View Source

Returns the child specification to start the endpoint
under a supervision tree.

 Link to this function

 config(key, default \\ nil)

 View Source

Returns the endpoint configuration for key
Returns default if the key does not exist.

 Link to this function

 config_change(changed, removed)

 View Source

Reloads the configuration given the application environment changes.

 Link to this function

 host()

 View Source

Returns the host for the given endpoint.

 Link to this function

 init(opts)

 View Source

Callback implementation for Plug.init/1.

 Link to this function

 local_broadcast(topic, event, msg)

 View Source

Callback implementation for Phoenix.Endpoint.local_broadcast/3.

 Link to this function

 local_broadcast_from(from, topic, event, msg)

 View Source

Callback implementation for Phoenix.Endpoint.local_broadcast_from/4.

 Link to this function

 path(path)

 View Source

Generates the path information when routing to this endpoint.

 Link to this function

 script_name()

 View Source

Generates the script name.

 Link to this function

 server_info(scheme)

 View Source

Returns the address and port that the server is running on

 Link to this function

 start_link(opts \\ [])

 View Source

Starts the endpoint supervision tree.
All other options are merged into the endpoint configuration.

 Link to this function

 static_integrity(path)

 View Source

Generates a base64-encoded cryptographic hash (sha512) to a static file
in priv/static. Meant to be used for Subresource Integrity with CDNs.

 Link to this function

 static_lookup(path)

 View Source

Returns a two item tuple with the first item being the static_path
and the second item being the static_integrity.

 Link to this function

 static_path(path)

 View Source

Generates a route to a static file in priv/static.

 Link to this function

 static_url()

 View Source

Generates the static URL without any path information.
It uses the configuration under :static_url to generate
such. It falls back to :url if :static_url is not set.

 Link to this function

 struct_url()

 View Source

Generates the endpoint base URL but as a URI struct.
It uses the configuration under :url to generate such.
Useful for manipulating the URL data and passing it to
URL helpers.

 Link to this function

 subscribe(topic, opts \\ [])

 View Source

Callback implementation for Phoenix.Endpoint.subscribe/2.

 Link to this function

 unsubscribe(topic)

 View Source

Callback implementation for Phoenix.Endpoint.unsubscribe/1.

 Link to this function

 url()

 View Source

Generates the endpoint base URL without any path information.
It uses the configuration under :url to generate such.

MongoosePushWeb.PrometheusMetricsController

 Summary

 Functions

 send(conn, map)

 Functions

 Link to this function

 send(conn, map)

 View Source

MongoosePushWeb.Router

 Summary

 Functions

 api(conn, _)

 call(conn, opts)

 Callback invoked by Plug on every request.

 init(opts)

 Callback required by Plug that initializes the router
for serving web requests.

 swagger_json(conn, _)

 Functions

 Link to this function

 api(conn, _)

 View Source

 Link to this function

 call(conn, opts)

 View Source

Callback invoked by Plug on every request.

 Link to this function

 init(opts)

 View Source

Callback required by Plug that initializes the router
for serving web requests.

 Link to this function

 swagger_json(conn, _)

 View Source

MongoosePushWeb.Plug.CastAndValidate

Module plug that serves as a wrapper for OpenApiSpex.Plug.CastAndValidate plug,
to overcome difficulties with proper message validating. For more details,
please refer to update_schema_and_do_call/2 function comment.

 Summary

 Functions

 update_schema(new_schema, conn, opts)

 Functions

 Link to this function

 update_schema(new_schema, conn, opts)

 View Source

MongoosePushWeb.Plug.CastAndValidate.StubAdapter

Module which is an almost empty Plug.Conn.Adapter behavior implementation.
It is used by the MongoosePushWeb.Plug.CastAndValidate plug
as part of the workaround this module introduces.

MongoosePushWeb.Plug.MaybePutSwaggerUI

MongoosePushWeb.Plug.MaybeRenderSpec

MongoosePushWeb.Protocols.RequestDecoder protocol

 Summary

 Types

 t()

 Functions

 decode(schema)

 Types

 Link to this type

 t()

 View Source

 @type t() :: term()

 Functions

 Link to this function

 decode(schema)

 View Source

MongoosePushWeb.Protocols.RequestDecoderHelper

 Summary

 Functions

 add_optional_fields(push_request, schema)

 maybe_parse_to_atom(arg1, val)

 parse_service(binary)

 Functions

 Link to this function

 add_optional_fields(push_request, schema)

 View Source

 Link to this function

 maybe_parse_to_atom(arg1, val)

 View Source

 Link to this function

 parse_service(binary)

 View Source

MongoosePushWeb.Schemas

MongoosePushWeb.Schemas.Request.SendNotification.Deep

 Summary

 Functions

 alert()

 base()

 data()

 Functions

 Link to this function

 alert()

 View Source

 Link to this function

 base()

 View Source

 Link to this function

 data()

 View Source

MongoosePushWeb.Schemas.Request.SendNotification.Deep.AlertNotification

Request.SendNotification.Deep.AlertNotification
In this request alert field is mandatory.

 Summary

 Types

 t()

 Functions

 schema()

 Callback implementation for OpenApiSpex.Schema.schema/0.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %MongoosePushWeb.Schemas.Request.SendNotification.Deep.AlertNotification{
 alert: term(),
 mode: term(),
 mutable_content: term(),
 priority: term(),
 service: term(),
 tags: term(),
 time_to_live: term(),
 topic: term()
}

 Functions

 Link to this function

 schema()

 View Source

Callback implementation for OpenApiSpex.Schema.schema/0.

MongoosePushWeb.Schemas.Request.SendNotification.Deep.Common.Alert

Request.SendNotification.Deep.Common.Alert
Schema representation of alert.

 Summary

 Types

 t()

 Functions

 schema()

 Callback implementation for OpenApiSpex.Schema.schema/0.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %MongoosePushWeb.Schemas.Request.SendNotification.Deep.Common.Alert{
 badge: term(),
 body: term(),
 click_action: term(),
 sound: term(),
 tag: term(),
 title: term()
}

 Functions

 Link to this function

 schema()

 View Source

Callback implementation for OpenApiSpex.Schema.schema/0.

MongoosePushWeb.Schemas.Request.SendNotification.Deep.Common.Data

Request.SendNotification.Deep.Common.Data
Custom key-values pairs of the message's payload. The FCM request with nested data can end up with error.

 Summary

 Types

 t()

 Functions

 schema()

 Callback implementation for OpenApiSpex.Schema.schema/0.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %MongoosePushWeb.Schemas.Request.SendNotification.Deep.Common.Data{}

 Functions

 Link to this function

 schema()

 View Source

Callback implementation for OpenApiSpex.Schema.schema/0.

MongoosePushWeb.Schemas.Request.SendNotification.Deep.MixedNotification

Request.SendNotification.Deep.MixedNotification
In this request both alert and data fields are mandatory.

 Summary

 Types

 t()

 Functions

 schema()

 Callback implementation for OpenApiSpex.Schema.schema/0.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %MongoosePushWeb.Schemas.Request.SendNotification.Deep.MixedNotification{
 alert: term(),
 data: term(),
 mode: term(),
 mutable_content: term(),
 priority: term(),
 service: term(),
 tags: term(),
 time_to_live: term(),
 topic: term()
}

 Functions

 Link to this function

 schema()

 View Source

Callback implementation for OpenApiSpex.Schema.schema/0.

MongoosePushWeb.Schemas.Request.SendNotification.Deep.SilentNotification

Request.SendNotification.Deep.SilentNotification
In this request data field is mandatory.

 Summary

 Types

 t()

 Functions

 schema()

 Callback implementation for OpenApiSpex.Schema.schema/0.

 Types

 Link to this type

 t()

 View Source

 @type t() ::
 %MongoosePushWeb.Schemas.Request.SendNotification.Deep.SilentNotification{
 data: term(),
 mode: term(),
 mutable_content: term(),
 priority: term(),
 service: term(),
 tags: term(),
 time_to_live: term(),
 topic: term()
 }

 Functions

 Link to this function

 schema()

 View Source

Callback implementation for OpenApiSpex.Schema.schema/0.

MongoosePushWeb.Schemas.Request.SendNotification.FlatNotification

Request.SendNotification.FlatNotification
Push notification request schema

 Summary

 Types

 t()

 Functions

 schema()

 Callback implementation for OpenApiSpex.Schema.schema/0.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %MongoosePushWeb.Schemas.Request.SendNotification.FlatNotification{
 badge: term(),
 body: term(),
 click_action: term(),
 data: term(),
 mode: term(),
 service: term(),
 tag: term(),
 title: term(),
 topic: term()
}

 Functions

 Link to this function

 schema()

 View Source

Callback implementation for OpenApiSpex.Schema.schema/0.

MongoosePushWeb.Schemas.Response.SendNotification.GenericError

Response.SendNotification.GenericError
Response schema for push notification request

 Summary

 Types

 t()

 Functions

 schema()

 Callback implementation for OpenApiSpex.Schema.schema/0.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %MongoosePushWeb.Schemas.Response.SendNotification.GenericError{
 details: term()
}

 Functions

 Link to this function

 schema()

 View Source

Callback implementation for OpenApiSpex.Schema.schema/0.

MongoosePushWeb.Schemas.Response.SendNotification.Gone

Response.SendNotification.Gone
The response sent when the requested content has been permanently deleted from server, with no forwarding address

 Summary

 Types

 t()

 Functions

 schema()

 Callback implementation for OpenApiSpex.Schema.schema/0.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %MongoosePushWeb.Schemas.Response.SendNotification.Gone{reason: term()}

 Functions

 Link to this function

 schema()

 View Source

Callback implementation for OpenApiSpex.Schema.schema/0.

MongoosePushWeb.Schemas.Response.SendNotification.PayloadTooLarge

Response.SendNotification.PayloadTooLarge
Response schema for push notification request

 Summary

 Types

 t()

 Functions

 schema()

 Callback implementation for OpenApiSpex.Schema.schema/0.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %MongoosePushWeb.Schemas.Response.SendNotification.PayloadTooLarge{
 reason: term()
}

 Functions

 Link to this function

 schema()

 View Source

Callback implementation for OpenApiSpex.Schema.schema/0.

MongoosePushWeb.Schemas.Response.SendNotification.ServiceUnavailable

Response.SendNotification.ServiceUnavailable
The server is not ready to handle the request

 Summary

 Types

 t()

 Functions

 schema()

 Callback implementation for OpenApiSpex.Schema.schema/0.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %MongoosePushWeb.Schemas.Response.SendNotification.ServiceUnavailable{
 reason: term()
}

 Functions

 Link to this function

 schema()

 View Source

Callback implementation for OpenApiSpex.Schema.schema/0.

MongoosePushWeb.Schemas.Response.SendNotification.TooManyRequests

Response.SendNotification.TooManyRequests
The user has sent too many requests in a given amount of time

 Summary

 Types

 t()

 Functions

 schema()

 Callback implementation for OpenApiSpex.Schema.schema/0.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %MongoosePushWeb.Schemas.Response.SendNotification.TooManyRequests{
 reason: term()
}

 Functions

 Link to this function

 schema()

 View Source

Callback implementation for OpenApiSpex.Schema.schema/0.

MongoosePushWeb.Schemas.Response.SendNotification.UnknownError

Response.SendNotification.UnknownError
The server returned an empty, unknown, or unexplained response

 Summary

 Types

 t()

 Functions

 schema()

 Callback implementation for OpenApiSpex.Schema.schema/0.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %MongoosePushWeb.Schemas.Response.SendNotification.UnknownError{
 reason: term()
}

 Functions

 Link to this function

 schema()

 View Source

Callback implementation for OpenApiSpex.Schema.schema/0.

mix certs.dev

Generate fake certs (placeholders) for HTTPS endpoint and APNS service.
Please be aware that APNS requires valid Apple Developer certificates, so it
will not accept those fake certificates. Generated certificates may be used
only with mock APNS service (like one provided by docker
mobify/apns-http2-mock-server).

 Summary

 Functions

 run(_)

 Callback implementation for Mix.Task.run/1.

 Functions

 Link to this function

 run(_)

 View Source

 @spec run(term()) :: :ok

Callback implementation for Mix.Task.run/1.

mix gh_pages_docs

Task for updating existing documentation version published on GH Pages.

 Summary

 Functions

 run(list)

 Callback implementation for Mix.Task.run/1.

 update_index_html(version)

 update_versions_js(current)

 Functions

 Link to this function

 run(list)

 View Source

 @spec run([String.t()]) :: :ok

Callback implementation for Mix.Task.run/1.

 Link to this function

 update_index_html(version)

 View Source

 Link to this function

 update_versions_js(current)

 View Source

mix test.env.down

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 Link to this function

 run(args)

 View Source

 @spec run(term()) :: :ok

Callback implementation for Mix.Task.run/1.

mix test.env.up

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 Link to this function

 run(args)

 View Source

 @spec run(term()) :: :ok

Callback implementation for Mix.Task.run/1.

mix test.env.utils

 Summary

 Functions

 compose(compose_binary, opcode_args)

 flunk(reason)

 wait_for_services(time_ms)

 Functions

 Link to this function

 compose(compose_binary, opcode_args)

 View Source

 Link to this function

 flunk(reason)

 View Source

 Link to this function

 wait_for_services(time_ms)

 View Source

mix test.env.wait

 Summary

 Functions

 run(list)

 Callback implementation for Mix.Task.run/1.

 Functions

 Link to this function

 run(list)

 View Source

 @spec run(term()) :: :ok

Callback implementation for Mix.Task.run/1.

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

